1. Gasinstallation 1.1 Gasgesetze Beispiel 1: In einem Windkessel mit einem Gesamtinhalt von 300 Litern befinden sich beim Einschalten der Pumpe bei 2,5 bar Überdruck 150 Liter Luft. Auf welches Volumen wird die Luft komprimiert, wenn der Ausschaltdruck der Pumpe bei 4,2 bar Überdruck liegt und wie viel Liter Wasser befinden sich beim Ausschalten im Windkessel? p1 · V1 = p2 · V2 V2 = p1 p2 · V1 = 3,5 5,2 · 150 = 100,96 l (Luft) VWasser = VGesamt – VLuft = 300 – 100,96 = 199,04 l Beispiel 2: In einer Heizungsanlage ist ein Membran-Druckausdehnungsgefäß mit einem Gasvolumen von 15 Litern eingebaut. Die Stickstofffüllung hat einen Überdruck von 1,2 bar. Auf welches Volumen wird der Gasraum komprimiert, wenn die Anlage einen Überdruck von 2,2 bar aufweist? p1 p2 = V2 V1 V2 = V1 · p1 p2 = 15 · 2,2 3,2 = 10,31 l Beispiel 3: In einem Sauerstoffbehälter mit einem Inhalt von 3000 Litern befindet sich Sauerstoff mit einem Überdruck von 150 bar und einer Temperatur von 15 °C. Wie viel kg Sauerstoff befinden sich im Behälter, wenn R für O2 = 259,8 J/kg . K beträgt? Welcher Überdruck herrscht im Behälter, wenn sich die Temperatur auf 30 °C erhöht? p · V = m · R · Θ ⇒ m = p · V R · Θ m = 151 · 105 · 3 259,8 · 288 = 605,43 kg p1 p2 = Θ1 Θ2 ⇒ p2 = p1 · Θ2 Θ1 p2 = 151 · 303 288 = 158,86 bar (abs) = 157,9 bar pÜ Beispiel 4: In einem Autoreifen befinden sich 25 Liter Luft unter einem Über- druck von 1,8 bar und einer Temperatur von 15 °C. Welche Masse hat die Luft im Reifen, wenn R = 287,1 J/kg . K be- trägt? Wie verändert sich der Reifendruck bei einer Temperaturerhöhung auf 70 °C? p · V = m · R · Θ ⇒ m = p · V R · Θ m = 2,8 · 105 · 0,025 287,1 · 288 = 0,085 kg p1 p2 = Θ1 Θ2 ⇒ p2 = p1 · Θ2 Θ1 p2 = 2,8 · 343 288 = 3,33 bar (abs) = 2,33 bar pÜ Beispiel 5: Wie viel kg Sauerstoff befinden sich in einer Gasflasche mit 50 Liter Inhalt und einem Überdruck von 95 bar? Die Temperatur beträgt 20 °C und R für O2 = 259,8 J/kg . K. Wie verändert sich der Druck in der Flasche, wenn durch Abkühlung die Gastemperatur auf 5 °C abfällt? p · V = m · R · Θ ⇒ m = p · V R · Θ m = 96 · 105 · 0,05 259,8 · 293 = 6,31 kg p1 p2 = Θ1 Θ2 ⇒ p2 = p1 · Θ2 Θ1 p2 = 96 · 278 293 = 91,09 bar (abs) = 90,1 bar pÜ 1.2 Berechnung von Belastung, Leis- tung, Anschluss- und Einstellwert von Gasgeräten Beispiel 1: Ein Gas-Einzelraumheizer hat eine Nennbelastung von 11,0 kW und eine Nennleistung von 9,0 kW. Berechnen Sie den Anschluss- und Einstellwert sowie den Wirkungsgrad für Erdgas mit einem Hi, B = 9,5 kWh/m3! η = PNL PNB = 9,0 11,0 = 0,818 ≅ 0,82 ≅ 82 % V · AW = PNB Hi, B = 11,0 9,5 = 1,16 m3 h V · EW = V · AW · 1000 60 = 1,16 · 1000 60 = 19,33 l min 335 ANGEWANDTE MATHEMATIK Angewandte Mathematik 1. Gasinstallation Gasgesetze Berechnung von Belastung, Leistung, Anschluss- und Einstellwert von Gasgeräten Bemessung von Abgasfängen Berechnung des gemeinsamen Abgasrohrdurchmessers Bemessung von Erdgasleitungen Bemessung von Flüssiggasleitungen MUSTER
RkJQdWJsaXNoZXIy Mjg5NDY1NA==